Classical Cat, Quantum Mouse

(12:15:11 PM) bradass87: hypothetical question: if you had free reign [sic] over classified networks for long periods of time … say, 8–9 months … and you saw incredible things, awful things … things that belonged in the public domain, and not on some server stored in a dark room in Washington DC … what would you do? […]

With the UK threatening to forcibly extricate Wikileaks‘ Julian Assange from the Ecuadorian embassy in London, its plain to see governments get… concerned, if state secrets become public domain.

When it comes to sensitive digital information, the world has relied on encryption for keeping secrets. The dominant encryption scheme is RSA, first made public in 1977. It relies on a hard problem: the fact that there is no known classical way to efficiently factor numbers. In other words, despite knowing how to do it, cracking RSA can take thousands of years with the current technique. However, in 1994, MIT mathematician/physicist Peter Shor showed that a quantum computer could factor numbers in polynomial time (milliseconds instead of millennia).

Lucky for the entities that use RSA to shield their data from prying eyes, there has yet to be a practical, scalable quantum computer and thus their data is safe for the time being.

Unfortunately or fortunately, depending on your side of the fence, it is only a matter of innovation (creativity + effort + time) before quantum computing is scalable and the world’s encrypted info is completely naked. Of course, the twist is that far stronger means of keeping data private have emerged in the quantum research space.

Whether you’re an individual who just wants their online activity to remain anonymous, or an agency with hard intelligence on a pending Martian invasion — don’t be too paranoid, but don’t delude yourself into believing security is forever.